Social media in politics: how to drive engagement and strengthen relationships

Aman Abid, Paul Harrigan, Shasha Wang, Sanjit K. Roy & Tauel Harper

To link to this article: https://doi.org/10.1080/0267257X.2022.2117235

Published online: 12 Sep 2022.

Submit your article to this journal

Article views: 546

View related articles

View Crossmark data

Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=rjmm20
Social media in politics: how to drive engagement and strengthen relationships

Aman Abid*, Paul Harrigan, Shasha Wang, Sanjit K. Roy and Tauler Harper

*UWA Business School, The University of Western Australia, Perth, Australia; †QUT Business School, Queensland University of Technology, Brisbane, Australia; ‡Department of Media and Communication, The University of Western Australia, Perth, Australia

**ABSTRACT
Marketing researchers have devoted considerable attention to marketer-generated content (MGC), social media engagement behaviour (SMEB) and online relationships. Prior studies, however, do not integrate these critical elements of social media marketing. Our study, which is underpinned in the Elaboration-Likelihood Model, offers evidence that MGC leads to SMEB, which has a positive impact on relationship quality. A sequential explanatory mixed-methods study, which comprises a content analysis of the official Facebook pages of American political parties and semi-structured interviews with voters who engage with political MGC, reveals that peripheral cues are the primary drivers of SMEB. Based on the quantitative and qualitative evidence, we demonstrate that shares are a higher-involvement activity than likes. We recommend that political marketers should rely on distinct sets of MGC cues to elicit shares and likes.

**ARTICLE HISTORY
Received 13 November 2020
Accepted 24 July 2022

**KEYWORDS
Social media; political marketing; SMEB; relationship marketing; Elaboration-Likelihood model; marketer-generated content

**Introduction
Social media played a significant role in the US presidential election of 2020. Financial resources dedicated to digital political marketing have grown exponentially over the last decade. Around $1.8 billion was spent on digital media in the recent presidential election. Facebook and Google were the primary financial benefactors (Radio Info, 2020). Social media’s role in political marketing will continue to rise (Appel et al., 2020). Like the printing press, radio, TV, and internet, social media have altered political marketing and campaigning (Cacciotto, 2017). Moreover, unlike traditional media, social media offer utility beyond one-way campaigning. Official social media channels or pages of political brands seek donors, update followers, facilitate petitions, recruit volunteers, and develop online relationships with followers.

Political and commercial brands regularly post content to engage their followers on social media. The content generated by the official channels of these brands is marketer-generated content (MGC). MGC is the primary driver of social media engagement behaviour (SMEB), which is ‘a customer’s behavioural manifestations that have a social media
focus, beyond purchase, resulting from motivational drivers’ (Dolan et al., 2016, p. 265). Specifically, we explore positive contribution, an active and favourable type of SMEB that encompasses activities like sharing and liking (Dolan et al., 2016, 2019). Positive contribution is one of the seven types of SMEB.

The knowledge gap in this area is the absence of a concrete understanding of the mechanism that leads to stronger online relationships on social media (Sheth, 2017; Steinhoff et al., 2019). There is a need to understand the roles of MGC and SMEB in cultivating online relationships. The literature shows that MGC drives SMEB (e.g., Colicev et al., 2018; Dolan et al., 2019; Tafesse & Wien, 2018), which leads to higher relationship quality (Achen, 2016; Clark et al., 2017). Relationship quality represents the strength of a relationship (Palmatier et al., 2006). Our study offers a holistic framework that integrates and tests the two conclusions. Additionally, it is essential to gain a nuanced understanding of SMEB. Various studies on the topic treat likes and shares in a similar manner. Likes and shares are positive contribution SMEB. Positive contribution is one of the seven types of SMEB (Dolan et al., 2016). We contend that likes and shares are active and favourable activities, but the latter is a higher-involvement activity since it requires more commitment, effort and cognitive resources (Kim & Yang, 2017; Swani & Labrecque, 2020). Therefore, we argue that sharers will respond to content cues and characteristics in a manner that reflects elaborate decision-making. For the purpose of this study, we term likes and shares as low and high-involvement SMEB respectively.

Specifically, we investigate the effects of a MGC’s argument quality and peripheral cues (source credibility, emotion, negative valence and visual symbolism) on relationship quality and the mediating roles of low and high-involvement SMEB. Theoretically, we draw on the Elaboration-Likelihood Model (ELM; Petty & Cacioppo, 1986), which is a dual-process theory of attitude change. The ELM has been used to understand the content on social media (e.g. Chang et al., 2020; Teng et al., 2017). The ELM posits two routes to persuasion. Highly motivated and involved recipients will process a message via the central route, which will see the message’s argument quality become the salient factor that drives attitude change. Conversely, individuals with a lower level of involvement will rely on the peripheral route, which sees peripheral cues like source likeability and credibility become the determinants of attitude change (Petty & Cacioppo, 1986). We postulate that likes and shares will see the followers utilise peripheral and central routes respectively.

We adopt a sequential explanatory mixed-methods design, i.e. quantitative research is followed by qualitative research (Creswell et al., 2003; Ivankova et al., 2006). To test the proposed relationships, we conduct an online content analysis of the official Facebook pages of the Democrat and Republican parties of the USA. For the quantitative phase, data comprise 169 posts and associated comments. MGC is manually coded for ELM cues. SMEB is operationalised using the number of likes and shares (Dolan et al., 2019; Tafesse & Wien, 2018). Relationship quality, a composite of relationship trust, commitment and satisfaction, is operationalised via the percentage of comments that reflected trust, commitment and satisfaction with the political brand (Abid et al., 2019). Subsequently, we conduct semi-structured interviews with eighteen voters who had liked and shared political MGC. A deductive approach, which relied on codes derived from the ELM and the relevant literature on political SMEB (Penney, 2016; Petty & Cacioppo, 1986; Wallsten,
is adopted to analyse the interview transcripts. The primary purpose of this explanatory phase is to shed light on the distinctions between likes and shares.

The research contributes to theory and practice. We offer a framework that highlights the underlying mechanism through which online relationships are strengthened on social media. Unlike most prior literature in social media marketing, our study posits and verifies the different processes underlying likes and shares. The study offers a unique qualitative perspective that describes likes and shares and highlights the distinctions between the two behaviours. We also contribute to the field of political marketing by integrating the relationship marketing paradigm and offering advice on the drivers of SMEB. We add to the list of peripheral cues by exploring source credibility and patriotic symbols. The content cues we explore are under-researched and add to the practitioners’ knowledge. We provide practitioners with a list of content characteristics that lead to greater engagement on social media.

Literature review

The various concepts that underpin this study, which are the Elaboration-Likelihood Model (ELM), social media engagement behaviour (SMEB) and relationship quality, are described in this section. Subsequently, the methods and findings of the quantitative and qualitative phases are included. The discussion and implications are presented in the penultimate section. The final section highlights the limitations of this study and suggests avenues of further research.

Elaboration-likelihood model

A dual-process theory, the ELM is frequently utilised to understand the impact of social media content (e.g., Chang et al., 2020; Colicev et al., 2018; Teng et al., 2017). According to the ELM, persuasion or attitude change can take place via two routes, which are the central and peripheral routes. Receivers who are motivated and able to process a message engage in a high degree of elaboration. Consequently, attitude change occurs via the central route. A higher motivation may be due to various factors like personal relevance, need for cognition or sense of responsibility. Likewise, a greater ability may be due to better understanding, prior knowledge or low distraction (Petty & Cacioppo, 1986). When receivers activate the central route, the argument quality of the message determines its persuasiveness. The attitudes formed via the central route are stronger and lasting.

The peripheral route is activated when receivers have low involvement with the message. In such situations, the receivers cannot devote substantial cognitive resources to the message. As a result, source or message-based peripheral cues determine the persuasive impact of the message. Attitude change via peripheral route is weaker. Numerous peripheral cues have been identified in the literature including source credibility, source attractiveness, source likeability, source homophily, message medium, message length, message valence, and message popularity (Chang et al., 2015; Petty & Cacioppo, 1986; Teng et al., 2017).

As a model of persuasion, the ELM is an appropriate framework to understand political marketing. However, few political marketing studies benefit from the ELM (e.g., Iyer et al., 2017; Koc & Ilgun, 2010; Landtsheer et al., 2008). These studies highlight the effectiveness
of peripheral cues in political marketing. We believe that the ELM’s similarity to Aristotle’s rhetorical appeals of *ethos*, *pathos* and *logos* makes it pertinent to the political context (Aristotle, 1926). These three modes of persuasion represent appeal to the source’s character or credibility (*ethos*), the audience’s emotions (*pathos*) and reason (*logos*).

A similitude can be drawn between *logos* and argument quality. Similarly, *ethos* and source-credibility are also comparable. Although emotions (*pathos*) rarely feature in the ELM literature, emotions have a place in the ELM since emotions influence cognition (Petty & Briñol, 2015). ‘Cognition has an emotional core’ (Morris et al., 2005). Additionally, the ELM has been used to understand online relationships (Chen & Ku, 2013; Jo, 2005; Sanchez-Franco & Rondan-Cataluña, 2010). These studies show that argument quality and source credibility affect relationship quality (Chen & Ku, 2013; Sanchez-Franco & Rondan-Cataluña, 2010).

Social media engagement behaviour

There are seven different types of engagement behaviours. Social media users can choose to respond actively (co-creation, positive contribution, negative contribution, and co-destruction) or passively (consumption, dormancy, and detachment) (Dolan et al., 2016). Our study focuses on positive contribution, an active and favourable form of SMEB that comprises social media responses like shares and likes (Dolan et al., 2016, 2019). Likes, shares and comments represent the actual behaviour of followers. Therefore, they represent the behavioural dimension of customer engagement (Tafesse & Wien, 2018), the other two being emotional and cognitive (Hollebeek et al., 2014).

Positive contribution SMEB is also referred to as behavioural engagement (Tafesse & Wien, 2018), post popularity (Chang et al., 2015) and content receptivity (Kumar et al., 2016). Research validates the positive impact of SMEB on various marketing outcomes. For instance, content receptivity has a substantial effect on spending, cross-buying and customer profitability (Kumar et al., 2016), whereas post popularity influences the perceived usefulness of a content as well as a preference towards it (Chang et al., 2015). We focus on likes and shares since mere comment count does not represent positive engagement (Tafesse & Wien, 2018; Tafesse, 2015). Additionally, we limit ourselves to positive contribution SMEB, whereas comments are categorised as creation.

Low-involvement SMEB and high-involvement SMEB

Unlike prior research that either studies the sum of likes and shares or formulates similar hypothesis for likes and shares, we treat the two activities differently and contend that likes and shares represent low- and high-involvement SMEB. Involvement is a widely studied topic that lends itself to multiple interpretations. However, there is a consensus among early scholars that involvement has a cognitive component (Stone, 1984). Involvement is associated with an elaborate cognitive process following the reception of a message (Krugman, 1965; Ray, 1973). Further, it is also linked to motivation (Petty & Cacioppo, 1986). We argue that sharing requires users to expend greater cognitive effort than liking and that sharing is associated with a wider array of motivations. Moreover, sharing is mostly a strategic action requiring greater physical effort also. Therefore, a user is more likely to engage in high-involvement decision-making when sharing a content as
opposed to when liking a content. Table 1 provides a summary of the distinctions between likes and shares.

Studies show that likes require a limited amount of effort and commitment compared to shares (Kim & Yang, 2017; Swani & Labrecque, 2020). Likes are ritualistic, instant and automatic responses to content that grabs our attention (Alhabash et al., 2019; Hayes et al., 2016; Zell & Moeller, 2018). Alhabash’s et al. (2019, p. 209) psychophysiological experiment demonstrates that the ‘like button is not only easier from an information processing perspective but could well be a habitual response and one that is automatic’. As per their study, other activities require greater cognitive resources than liking a content. Qualitative studies show that sometimes social media users click the like button aimlessly, without much elaboration or cognition (Hayes et al., 2016), such as frequently liking a post by a friend without much elaboration. On the other hand, sharing represents a higher, if not the highest, level of commitment and engagement with the content and the brand (Barreto & Ramalho, 2019; Kim & Yang, 2017; Malhotra et al., 2013; Swani & Labrecque, 2020). Barreto and Ramalho (2019) found a direct link between high-involvement and sharing of Facebook posts. The link between higher involvement and shares has been established in the political context also (Samuel-Azran et al., 2018). Other studies show that sharing political content is a well-thought-out, planned behaviour that is negatively linked to impulsiveness (Hossain et al., 2018). Furthermore, political content sharing is also triggered by strong negative emotions and political disagreement (Hasell & Weeks, 2016; Kim et al., 2021; Lane et al., 2017), both states of high involvement.

Liking and passive consumption of content are driven by the same gratification, which is entertainment (Khan, 2017). Liking represents a positive attitude towards the MGC or the brand and is a way to stay connected with the brand, making it a form of brand advocacy (Swani & Labrecque, 2020). Likes can also be ‘pity likes’ or ‘support likes’, which are likes given when feeling sad for or being supportive of someone (Hayes et al., 2016; Rhoads et al., 2016). On the other hand, a range of motivations are associated with sharing content including informational, self-presentation, social presence, social interaction and social conversation (Ham et al., 2019; Khan, 2017; Lee et al., 2019). In the political context, content sharing is driven by various motivations like self-expression, self-presentation, social recognition, altruism, criticism, informing, socialisation, awareness, and self-promotion (Hossain et al., 2018; Kim et al., 2021; Liu et al., 2017; Parmelee & Roman, 2019).

Table 1. Distinction between likes and shares (Adapted from Swani & Labrecque, 2020).

<table>
<thead>
<tr>
<th>Steps</th>
<th>Likes</th>
<th>Shares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td>One click</td>
<td>Two clicks</td>
</tr>
<tr>
<td>Exposure to others in network</td>
<td>Reflexive</td>
<td>Reflexive/reflective</td>
</tr>
<tr>
<td>Original post meaning</td>
<td>Minimal</td>
<td>Maximum</td>
</tr>
<tr>
<td>Post appears on receivers’ timeline</td>
<td>No change</td>
<td>May change</td>
</tr>
<tr>
<td>Motivations</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Engagement behaviour</td>
<td>Few</td>
<td>Diverse</td>
</tr>
<tr>
<td>Frequency</td>
<td>Contribution</td>
<td>Contribution/Creation</td>
</tr>
<tr>
<td>Feedback</td>
<td>Most frequently used</td>
<td>Least frequently used</td>
</tr>
<tr>
<td>Feedback</td>
<td>None</td>
<td>Yes</td>
</tr>
<tr>
<td>Further action required</td>
<td>Not required</td>
<td>May be required</td>
</tr>
<tr>
<td>Drivers</td>
<td>Affect</td>
<td>Affect/rational appeal</td>
</tr>
</tbody>
</table>

Some users share to promote dialogue and provoke civic discussions (Chadwick & Vaccari, 2019; Penney, 2016).

Liking MGC is a one-click activity, which is non-strategic in nature (Kim & Yang, 2017). Contrarily, shares are strategic actions that are linked to self-presentation. Shares are visible on a user’s timeline, making them a part of the user’s online persona. Shares are a two-click activity that allows users to change the meaning of the MGC and maximise exposure to their network. Sharing MGC is usually accompanied by a comment, question or tagging of friends (Lee et al., 2019). Users not only expend cognitive resources and time when sharing MGC but utilise further resources by responding to users who engage with the shared post or examining the engagement generated by the shared post. Sharing political content is a socially risky activity on social media (Lane et al., 2017). In fact, many users refrain from engaging with political content on social media due to social anxiety (Marder et al., 2018). Research shows that sharers of political content are ideologues who are politically motivated (Wallsten, 2011).

Literature shows that likes and shares are driven by different content cues. Shares are driven by affect and visuals just like likes are, however they are also driven by rational appeals like comments (Kim & Yang, 2017; Swani & Labrecque, 2020). Several studies confirm this in the political context (Bronstein, 2013; Gerodimos & Justinussen, 2014; Samuel-Azran et al., 2015). These studies show that shares are driven by both logic and emotion, whereas likes are primarily driven by the latter.

Interestingly, practitioners realise that shares involve greater commitment and effort than likes and comments (Social Media Week, 2017; Big Four digital, n.d). Facebook algorithms give shares twice the weightage of comments and fourteen times that of likes when deciding what to show users (Calero, 2013, cited in Kim & Yang, 2017). This means that users like a variety of content but the type of content they share is the type of content they are most interested in viewing. Moreover, shares are the least used form of engagement. During October 2020, a Facebook user commented on five posts and liked twelve posts but shared only one post on average (Gottern, 2020).

Based on the preceding discussion, we contend that sharing political MGC requires a higher level of involvement than liking. Accordingly, we classify the two based on the level of involvement. We term shares as high-involvement SMEB and likes as low-involvement SMEB. We do so because ELM caters to these varying levels of involvement, which determine the likelihood of elaboration (Petty & Cacioppo, 1986). It is involvement that determines whether attitude change will occur through the central route or the peripheral route. The tenets of ELM dictate that since sharing is a high-involvement decision, social media users will activate the central route and the attitude change will happen via argument quality (Petty & Cacioppo, 1986). However, liking, being a low-involvement decision, will not be affected by argument quality and will be solely dependent on the peripheral cues. It should be noted that peripheral cues affect change via the central route also and are effective in both high- and low-involvement situations (Dotson & Hyatt, 2000; Lumpkins, 2010).

Relationship quality

The integration of social media in relationship marketing (Choudhury & Harrigan, 2014; Sheth, 2017) and political marketing is well documented (Williams, 2017). A relational
approach to political marketing is advised in the literature (Henneberg & O'Shaughnessy, 2009; Ormrod et al., 2013). A relational approach is perhaps the only feasible approach towards social media. However, political brands remain reluctant to adopt it (Harris & Harrigan, 2015; Parsons & Rowling, 2018). Voters have been known to develop online para-social relationships with politicians (Ancu & Cozma, 2009). Social media allow political brands to foster these relationships by offering a direct and continuous communication channel.

Relationship quality is a widely studied concept in relationship marketing. It refers to the strength of the customer’s relationship with a brand (Palmatier et al., 2006). Several dimensions have been employed to operationalise relationship quality. The commonly utilised dimensions are relationship trust, commitment and satisfaction (Achen, 2016; Clark et al., 2017; Hajli, 2014). Research shows that following and engaging with a brand’s social media channels leads to a higher relationship quality (Achen, 2016; Clark et al., 2017), which is linked to other desirable marketing outcomes (Hajli, 2014; Roy & Eshghi, 2013). At the individual level, relationship trust, commitment and satisfaction are the most studied variables in relationship marketing (Palmatier et al., 2006; Verma et al., 2016).

Relationship trust refers to one’s ‘confidence in the exchange partner’s reliability and integrity’ (Morgan & Hunt, 1994, p. 23). Relationship commitment is ‘an enduring desire to maintain a valued relationship’ (Palmatier et al., 2006, p. 138). Relationship satisfaction is a consumer’s overall satisfaction with the relationship (Palmatier et al., 2006). Understanding relationship quality is crucial in the political context because trust in American political brands, satisfaction with American democracy and commitment to the two major parties are at an all-time low (American Institutional Confidence Poll, 2018; Dalton, 2013; Pew Research Centre, 2018).

In line with recent research (Abid et al., 2019), this study operationalises relationship quality using the comments associated with the content. The present study refers to relationship quality as the percentage of comments classified as expressions of trust, commitment or satisfaction with the content-generator. In prior research, the total number of comments have been used to operationalise constructs like commitment (Bonsón & Ratkai, 2013), which is one of the elements of relationship quality.

Conceptual framework

Various characteristics and cues of MGC are explored in the commercial context. The studies in this domain focus on message appeal, format, type, goal, and theme of the content, as well as characteristics like visuals, links and interactivity (see detailed list: Shahbazezhad et al., 2021; Tafesse & Wien, 2017, 2018). Similarly, political MGC characteristics and cues like its valence, appeal, theme, sentiment, presentation strategy, and framing have been explored in the political marketing literature (e.g. Collander et al., 2017; Elder & Phillips, 2017; Muñoz & Towner, 2017; Walker et al., 2017). Thus, the variables we include in our investigation contribute novel insights to the literature. The conceptual framework of the study is presented in Figure 1.

Argument quality

Argument quality is defined as ‘the persuasive strength of arguments embedded in an informational message’ (Bhattacherjee & Sanford, 2006, p. 811). It is the receiver’s
Figure 1. Conceptual framework.

perception of how convincing the argument is or how complete and accurate the information presented in the argument is (Chang et al., 2020). A strong argument is comprehensive, accurate, timely, and relevant (Teng et al., 2017). Based on the ELM, strong arguments have an impact through the central route, which is activated when receivers have the motivation and the ability to elaborate on the message (Petty & Cacioppo, 1986).

Strong arguments are effective in political discourse also (Gil de Zuniga et al., 2018). Embedded in the rhetorical appeals framework, content analyses of Barack Obama’s Facebook pages found *logos* to be the driver of comments and shares but not likes (Bronstein, 2013; Gerodimos & Justinussen, 2014), which indicates that users engage in high-involvement decision-making when sharing. In line with these studies and the ELM, the authors postulate that argument quality will have an impact on high-involvement SMEB via the central route. Additionally, the ELM posits that argument quality impacts attitude change through the central route only. Therefore, we hypothesise that:

H1. Argument quality will have a positive impact on high-involvement SMEB.

Source credibility

Source credibility is a widely studied peripheral cue (Chang et al., 2015; Hur et al., 2017; Teng et al., 2017). It refers to the perceived believability, competence and trustworthiness of the source (Chen & Ku, 2013). Source credibility influences an online message’s acceptability and the confidence in it, as well as its perceived usefulness (Kang & Namkung, 2019; Shu & Scott, 2014).

The present study, however, does not refer to the source credibility of the communicator (i.e. Republican or Democrat Facebook pages) but that of the content they post. Political brands frequently share news stories and articles. It is the credibility of the sources of these news stories and articles that we investigate. In order to subjectively study the effect of a content’s source credibility, the authors judged the content’s source credibility by utilising Media Bias Chart, which is a mechanism developed by the Ad Fontes Media to help news readers establish the reliability of American news sources.
Per the ELM, content shared from credible sources like Reuters, The New York Times, The Washington Post, Wall Street Journal or BBC America should stimulate peripheral processing of information in followers having low involvement. Although a highly engaged audience is more likely to evaluate the substance of the content (Petty & Cacioppo, 1986), various studies demonstrate that source credibility influences via the central route also, which is due to source credibility being viewed as an ‘issue-relevant argument’ by high-elaboration users (Bhattacherjee & Sanford, 2006). The effect of source credibility through the central route has been verified in the literature (Kim et al., 2016; Tseng & Wang, 2016), including in politics (Chebat et al., 1990). By increasing the perceived usefulness of the message, source credibility triggers higher elaboration. Therefore, we hypothesise that:

H2a. The source credibility of content will have a positive impact on high-involvement SMEB.

H2b. The source credibility of content will have a positive impact on low-involvement SMEB.

Emotion

Political marketing consultants recommend affect-laden communications (Serazio, 2017). The positive effect of emotions on voter behaviour is established in political psychology (Brader & Marcus, 2013). Emotional political content is ideal for social media (Bronstein, 2013; Samuel-Azran et al., 2015). Research shows that stronger voter relationships are predominantly contingent upon social and emotional exchanges (Abid & Harrigan, 2020). Voting itself is an emotional act (Bruter & Harrison, 2017). Similarly, emotions are the primary driver of content virality on social media (Berger & Milkman, 2012; Tellis et al., 2019).

The integration of emotions in the ELM framework remains limited since it is a model of cognition rather than affect. However, emotional appeals, which feature in a message (e.g. hope, fear, anger, joy), influence a receiver’s judgements through cognitive processes (Petty & Briñol, 2015). Consequently, recent studies have integrated emotions into the ELM (Manca et al., 2020; Xiang et al., 2019). Emotion’s impact is simple in low-involvement conditions where emotions lead to attitude changes that are consistent with the message. Regarding the central route, however, emotions can not only act as arguments but can also trigger biased thinking (Petty & Briñol, 2015). Therefore, emotion has an impact through both central and peripheral routes. This has been confirmed in ELM literature (Morris et al., 2005). Considering the dual effects of emotion, we propose that:

H3a. Emotional content will have a positive impact on high-involvement SMEB.

H3b. Emotional content will have a positive impact on low-involvement SMEB.
Valence

Substantial research is devoted to valence of WOM, eWOM, online reviews, and social media posts (De Pelsmacker et al., 2018; Floh et al., 2013; Hayes et al., 2018; Kumar et al., 2016; Kwak et al., 2010; de Matos & Rossie, 2008). A significant amount of literature supports the positivity bias, i.e. positive information is rewarded on social media (Reinecke & Trepte, 2014). For example, friends on social networking sites (SNSs) are more likely to comment on status updates that are of positive valence (Ziegele & Reinecke, 2017). Similarly, posts with positive valence have a favourable impact on relationship development. Social media posts with negative valence have an adverse impact on relationship development (Orben & Dunbar, 2017). Recent studies show that content virality is also driven by positive valence (Tellis et al., 2019). However, these researchers typically study low-involvement situations such as friends’ life updates or influencers selling products. Negative campaigning is a serious issue that has been on the rise (Orben et al., 2018), which poses a question as to whether positive valence is becoming less effective in the current climate of polarisation. This concern is pertinent because the audiences of negative information are normally highly involved.

The ELM literature shows that positive valence is processed using the peripheral route, whereas messages that are negative are processed via the central route (Morris et al., 2005). This is due to negative messages being perceived as diagnostic and credible. Therefore, they require greater effort and elaboration. There is substantial evidence for this negativity bias (Rim & Song, 2016; Skowronski & Carlston, 1989; Teng et al., 2017). For instance, negative valence triggers greater cognitive elaboration of online reviews (De Maeyer, 2012). Similarly, negative valence magnifies the impact of logos (Amos et al., 2019). In the political context, voters with higher involvement are more likely to engage with political ads that have a negative valence by devoting greater cognitive resources and carefully processing it (Faber et al., 1993). We posit that:

H4a. Negative valence will have a stronger positive impact on high-involvement SMEB than positive valence.

H4b. Negative valence will have a stronger negative impact on low-involvement SMEB than positive valence.

Visual symbolism

Visuals are an integral part of social media. They lead to greater engagement (Tafesse, 2015). Visual symbolism leads to a sense of identification, distinction and prestige on social media (Fujita et al., 2019). Integrating visual symbolism is an important aspect of political marketing also (Hart, 1995; Ormrod et al., 2013; O’Shaughnessy, 2003). Specifically, the current study examines patriotic symbolism since it is frequently utilised in American politics and allows for objective and reliable coding. Other forms of symbolism like religious symbolism or protest symbolism are not investigated in this study. As per the ELM, visual symbols like religious or sacred symbols are peripheral cues (Dotson & Hyatt, 2000; Lumpkins, 2010).

Posting symbolic images on social media, which are built upon a brand and its followers’ shared identity, artefacts, rituals, and values, increases the likelihood of
favourable responses (Fujita et al., 2019; Tafesse & Wien, 2018). The use of visual symbolism in presidential campaigns has been discussed in the literature. The use of the American flag, the Statue of Liberty and the bald eagle in campaign posters goes back two hundred years (Benoit, 2019). Patriotic symbols were used to excellent effect by Donald J. Trump’s Instagram channel during his presidential campaign in 2016 (Muñoz & Towner, 2017). These symbols included the Whitehouse, military, police, state flags, and firefighters (Muñoz & Towner, 2017). Other symbols like the US Bill of Rights and the Capitol Building are also considered in this study.

Like the peripheral cues discussed earlier, studies embedded in the ELM demonstrate that sacred or religious symbols act as both peripheral cues and the central element of a persuasive message (Dotson & Hyatt, 2000; Lumpkins, 2010). For instance, Lumpkins (2010) concluded that high-involvement participants were equally or more likely to process sacred symbols (Christian Cross). This conclusion is consistent with prior work that demonstrates the positive impact of religious symbols on high-involvement subjects (Dotson & Hyatt, 2000). Lumpkins (2010) explains that this is because of possible dual processing via central and peripheral routes (MacKenzie et al., 1986), whereas Dotson and Hyatt (2000) assert that peripheral cues should not be viewed in a deterministic way. Based on these studies, we put forth the following hypotheses:

H5a. Visual symbolism will have a positive impact on high-involvement SMEB.

H5b. Visual symbolism will have a positive impact on low-involvement SMEB.

Social media engagement behaviour and relationship quality

Engagement with brands on social media has a positive impact on relationship quality (Achen, 2016; Clark et al., 2017). For instance, followers who engaged with the official pages of the National Basketball Association (NBA) teams enjoyed higher overall relationship quality. Similarly, students who engaged with their university’s social media channels also exhibited high levels of relationship quality (Clark et al., 2017). Other studies demonstrate that SMEB (conceptualised as post popularity) leads to stronger relationships on social media (Abid et al., 2019) and that SMEB (conceptualised as content receptivity or post popularity) leads to various favourable outcomes from a marketing perspective (Kumar et al., 2016; Chang et al., 2015). Since social media engagement with a brand’s content or page is linked to stronger relationships, we predict that both low- and high-involvement SMEB will lead to an increase in relationship quality.

H6a. High-involvement SMEB will have a positive impact on relationship quality.

H6b. Low-involvement SMEB will have a positive impact on relationship quality.
Research design

To test the hypotheses and further explore our assertions concerning likes and shares being low and high-involvement SMEBs, we adopt an explanatory sequential mixed-methods design (Creswell, 2013; Creswell & Clark, 2017; Creswell et al., 2003). The quantitative phase comprises an online content analysis of the Facebook pages of two political parties. In the subsequent phase, we adopt a qualitative approach to examine likes and shares in greater depth. This is done via semi-structured interviews with voters who had shared and liked political MGC. As per the literature, the quantitative phase was completed prior to the commencement of the qualitative phase, with the latter aiming to explain the crucial aspects of our initial findings (Ivankova et al., 2006).

Quantitative phase

To understand the impact of political MGC’s cues, we conduct a content analysis of the official Facebook pages of the two primary political parties of the US. The quantitative phase utilises a mixed-methods approach that consists of qualitative coding of content and comments followed by quantitative analysis. The approach is frequently utilised to explore the impact of MGC (Ashley & Tuten, 2015; Swani et al., 2017; Tellis et al., 2019). Online content analysis has been utilised to understand the impact of political MGC on SMEB (Bronstein, 2013; Samuel-Azran et al., 2015). Importantly, a content analysis of social media pages depicts the actual behaviour of users unlike experiments and surveys.

Data

Seven out of ten American adults use Facebook. Barring YouTube, it remains more popular than any other social media platform in the USA. It is a better representation of the American population since its reach encompasses rural areas, older citizens, the less educated, and various ethnic groups (Pew Research Centre, 2019a). Therefore, Facebook provides a more reliable and representative audience to test the proposed hypotheses.

An initial sample of 200 posts and 43,654 associated comments was sourced from the Facebook pages of the Republican and Democratic Parties. A hundred posts preceding a fixed date were captured from each party’s official Facebook page. Posts about seasonal greetings (Thanksgiving, Hanukah, Diwali, Christmas, New Year) and shopping offers (T-shirts, Caps, Hoods, Trump merchandise) are excluded from the analysis. These posts had exceptionally low engagement. Similarly, outliers were removed from the data. The final sample that was used in the statistical analysis comprised 169 posts. Although the sample is less than desirable, content analyses of fewer posts have yielded meaningful insights in both marketing (e.g. Cvijikj & Michahelles, 2011; Sabate et al., 2014) and political marketing literature (e.g. Elder & Phillips, 2017; Vesnic-Alujevic & Van Bauwel, 2014).

Coding of content

In the first stage of the coding process, the content was coded. A coding manual was developed to illustrate the variables (see Table 2). Code descriptions were aligned with prior research (e.g. Abid et al., 2019; Muñoz & Towner, 2017). Argument quality, emotion, source credibility, valence, and visual patriotic symbolism were coded using dichotomous,
<table>
<thead>
<tr>
<th>Variable</th>
<th>Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emotion</td>
<td>0 = Emotion absent</td>
<td>A post will be coded as 1 if the post evokes emotions like fear, anger, hope, joy, empathy, etc., or relies on a sense of identity, shared values, or celebrates a triumph (Bronstein, 2013; Samuel-Azran et al., 2015).</td>
</tr>
<tr>
<td></td>
<td>1 = Emotion present</td>
<td></td>
</tr>
<tr>
<td>Argument Quality</td>
<td>0 = Argument quality absent</td>
<td>A post will be coded as 1 if it relies on accurate and timely facts, figures, reason, argument’s strength, historical accounts, surveys or polls, statistics, or experts to support the claim (Abid et al., 2019).</td>
</tr>
<tr>
<td></td>
<td>1 = Argument quality present</td>
<td></td>
</tr>
<tr>
<td>Visual symbolism</td>
<td>0 = Symbolism absent</td>
<td>A post will be coded as 1 if it employs images that integrate visual symbols of American patriotism like the flag, The White House, bald eagle, military officers, red-white-blue colour scheme, etc. (Muñoz & Towner, 2017).</td>
</tr>
<tr>
<td></td>
<td>1 = Symbolism present</td>
<td></td>
</tr>
<tr>
<td>Valence</td>
<td>0 = Negative valence</td>
<td>A post will be coded as 0 if it is a political attack, makes use of negative news or a negative appeal, or makes an explicit or implicit reference to the competing party based on political values or political issues.</td>
</tr>
<tr>
<td></td>
<td>1 = Neutral or positive</td>
<td></td>
</tr>
<tr>
<td>Content’s source credibility</td>
<td>0 = High credibility source absent</td>
<td>A post will be coded as 1 if it has a reliability score of over 32 as per the Media Bias Chart V. 6. A few examples of these sources are: CNN, MSNBC, ABC News, NBC News, The Washington Post, The New York Times, and NPR.</td>
</tr>
<tr>
<td></td>
<td>1 = High credibility source present</td>
<td></td>
</tr>
</tbody>
</table>

binary codes. This is a standard practice which is frequently employed in similar studies (Ashley & Tuten, 2015; Ertimur & Gilly, 2012; Sabate et al., 2014).

The primary coder, a final-year doctoral candidate, coded the content for valence and patriotic symbolism in an objective manner. The few neutral pieces of content were included in the category of positive valence. The content’s source credibility was coded using an industry tool known as Media Bias Chart (Version 6), which is developed by Ad Fontes Media, a non-profit, media watchdog organisation. The news organisations that had a score of 32 or higher (out of 64) were coded as credible sources, whereas content shared from sources that had scores below 32 were coded as having low credibility. We did make one exception, Fox News. It was coded as credible despite having a score below 32. It frequently featured as a source of content for the Republican Party. Considering Fox News is widely perceived as the most credible source of news among Republicans and conservatives (Gramlich, 2020), we coded it as having high credibility. Content shared from sources that did not feature in the Media Bias Chart database and the remaining content were coded as low credibility.

The coding of argument quality and emotion involved subjectivity. Therefore, a second coder, an expert in the field of digital media and communications, was engaged and the complete set of posts was shared. Ten percent of the posts were randomly selected by the expert and coded for argument quality and emotions. The inter-coder reliability (ICR) values for the two variables were above .8, indicating a good inter-coder agreement (MacPhail et al., 2016). Finally, high-involvement SMEB was operationalised using the number of shares, whereas low-involvement SMEB was operationalised using the number of likes received by the MGC.

Coding of comments
The study involved the coding of comments to operationalise the dependent variable, relationship quality. Online text like social media comments is a great source of insight for marketers and is increasingly being used to extract linguistic and psychological constructs
in various disciplines including marketing (Berger et al., 2019; Coussement et al., 2017; Humphreys & Wang, 2018).

Most studies in the area operationalise constructs with the aid of computer-aided analysis (e.g. Linguistic Inquiry and Word Count (LIWC)) using either inbuilt dictionaries or custom dictionaries which rely on keywords (e.g. Dolan et al., 2019). This study relies on manual content analysis following recent studies that operationalise constructs through social media comments (Abid et al., 2019; Feddema et al., 2021). We use a manual approach because comments responding to political content are complex, have latent meanings, are highly contextual, include sarcasm, and discuss a wide variety of trending issues, people and topics. A computer-aided text analysis is not ideal in this scenario (Humphreys & Wang, 2018). Manual content analysis is often ignored due to its low efficiency; however, it has the highest validity compared to computer-aided and AI-aided text analysis tools. This is because humans are far superior in interpreting and detecting contextual, manifest and latent meanings (Lee et al., 2019).

To operationalise relationship quality, comments for each post were captured via NCapture and transferred to Evernote for subsequent analysis. Certain data procedures, which have been highlighted in the literature, were omitted due to the employment of manual coding (Berger et al., 2019). For instance, data cleaning, spell checks and removal of common words were not needed. The comments were read by the primary coder to evaluate whether the commenter expressed trust, commitment or satisfaction with the political party posting the content. For each post, the relationship quality was calculated as the percentage of total comments that denoted favourable expressions of relationship satisfaction, trust or commitment.

Comments exhibiting trust captured the dimensions of reliability, truthfulness and sincerity (Garbarino & Johnson, 1999; Morgan & Hunt, 1994), whereas comments categorised as expressions of commitment reflected the elements of loyalty, sense of belonging and long-term support (Garbarino & Johnson, 1999). Satisfaction captured the commenter’s agreement with the political MGC’s message or general satisfaction with the political brand (Palmatier et al., 2006). Certain comments were excluded from the analysis. These included comments that: relied exclusively on emoticons, were replies to comments, included inconclusive statements, had friends tagged in them, and were repeated comments from the same user. This is in line with prior literature that operationalises relationship quality via social media comments (Abid et al., 2019).

The methodology resembles that of LIWC, which employs frequencies and percentages of words for analysis. However, unlike LIWC, this study’s unit of analysis was not a single word but the entire comment. A total of 15,048 comments out of the total 43,654 comments were classified as favourable relational comments. Reliability is usually lower for manual analysis (Lee et al., 2019). To ensure reliability, a second coder was trained and allocated five per cent of the posts. The primary coder was not involved in the training and allocation process. The average inter-coder agreement for relationship trust, commitment and satisfaction was .77 and no individual value was below .7. The values for Cohen’s kappa were above .6. These values, although lower than desired, indicate a substantial inter-coder agreement and are considered acceptable (Hallgren, 2012; MacPhail et al., 2016). The primary reason for a lower ICR were comments that conveyed more than one of the three constructs. This increased the subjectivity of coding, leading coders to
allocate the same comment to different constructs. Overall, this should have little impact since a comment displaying any or all of the three variables was accounted once only.

Results (quantitative phase)

Descriptive statistics

Before testing the hypotheses, descriptive analyses were conducted to understand the features of the MGC and associated comments (see Table 3). The majority of the posts did not contain strong arguments (83%). Roughly half of the posts were coded as high credibility. More than two thirds of the posts presented emotions (68%). Less posts showed positive valence (39%). Only 12% of the posts showed visual symbols. The high-involvement SMEB (i.e. the number of shares) ranged from 13 to 1350 with an average of 316 (SD = 288.845). The low-involvement SMEB (i.e. number of likes) ranged from 94 to 5240 with an average of 1661 (SD = 1015.298). Lastly, the percentage of comments depicting relationship quality ranged from 3% to 77% with an average of 33% (SD = 15.226).

Hypotheses testing

A multivariate analysis of the variance (MANOVA) model was conducted to test the relationships between MGC cues and SMEB (i.e. H1–H5, see Table 4) using SPSS. Novak (1995) argues that MANOVA is appropriate when hypotheses include multiple dependent variables and categorical independent variables. Critical assumptions in MANOVA include equal covariance matrices between groups and normality. Researchers have used natural log transformation on the variables to normalise the dependent variables when these assumptions are not satisfied (Helgesen, 2006; Steinhorst & Williams, 1985). High-involvement SMEB and low-involvement SMEB were not normally distributed (p value of the Kolmogorov-Smirnov test <.05), and the skewness indicators were 1.668 (standard error of skewness =.187) and 1.150 (standard error of skewness =.187) respectively, which

<table>
<thead>
<tr>
<th>Variables</th>
<th>Variable operationalisation</th>
<th>Descriptive analysis*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content cues</td>
<td></td>
<td>Percentage</td>
</tr>
<tr>
<td>Argument Quality</td>
<td>0 = Argument quality absent</td>
<td>83%</td>
</tr>
<tr>
<td></td>
<td>1 = Argument quality present</td>
<td>17%</td>
</tr>
<tr>
<td>Source credibility</td>
<td>0 = Low source credibility</td>
<td>51%</td>
</tr>
<tr>
<td></td>
<td>1 = High source credibility</td>
<td>49%</td>
</tr>
<tr>
<td>Emotion</td>
<td>0 = Emotion absent</td>
<td>32%</td>
</tr>
<tr>
<td></td>
<td>1 = Emotion present</td>
<td>68%</td>
</tr>
<tr>
<td>Valence</td>
<td>0 = Negative valence</td>
<td>61%</td>
</tr>
<tr>
<td></td>
<td>1 = Positive valence</td>
<td>39%</td>
</tr>
<tr>
<td>Visual Symbolism</td>
<td>0 = Visual Symbolism absent</td>
<td>88%</td>
</tr>
<tr>
<td></td>
<td>1 = Visual Symbolism present</td>
<td>12%</td>
</tr>
<tr>
<td>Outcome variables</td>
<td>Number of shares</td>
<td>Range (13, 1350)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean (316)</td>
</tr>
<tr>
<td>High-involvement SMEB</td>
<td>Number of likes</td>
<td>Range (94, 6943)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean (1816)</td>
</tr>
<tr>
<td>Relationship quality</td>
<td>Percentage</td>
<td>Range (3%, 77%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean (33%)</td>
</tr>
</tbody>
</table>

*Percentages are used to describe binary variables for the Content cues. Range and Mean are used to describe continuous variables for the SMEB and relationship quality.
Table 4. MANOVA results – testing H1– H5.

<table>
<thead>
<tr>
<th></th>
<th>(\ln(\text{High Involvement SMEB})) estimated marginal means</th>
<th>(\ln(\text{Low Involvement SMEB})) estimated marginal means</th>
<th>Supported Hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument Quality</td>
<td>Not present</td>
<td>Present</td>
<td>F-value</td>
</tr>
<tr>
<td>Low</td>
<td>5.321</td>
<td>5.638</td>
<td>2.237*</td>
</tr>
<tr>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source Credibility</td>
<td>Not present</td>
<td>Present</td>
<td>2.998**</td>
</tr>
<tr>
<td>Low</td>
<td>5.375</td>
<td>5.584</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emotion</td>
<td>Not present</td>
<td>Present</td>
<td>14.378***</td>
</tr>
<tr>
<td>Low</td>
<td>5.238</td>
<td>5.721</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valence</td>
<td>Not present</td>
<td>Present</td>
<td>52.049***</td>
</tr>
<tr>
<td>Low</td>
<td>5.956</td>
<td>5.003</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visual Symbolism</td>
<td>Not present</td>
<td>Present</td>
<td>6.095*</td>
</tr>
<tr>
<td>Low</td>
<td>5.232</td>
<td>5.726</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ns means not significant; * means significant at .05 level; ** means significant at .01 level; *** means significant at .001 level.

are greater than 1. Therefore, they were transformed using the natural log approach for the subsequent analyses. After the transformation, \(\ln(\text{High Involvement SMEB}) \) ranged from 2.56 to 7.21 \((M = 5.375, SD = .906)\), and \(\ln(\text{Low Involvement SMEB}) \) ranged from 4.54 to 8.56 \((M = 7.221, SD = .666)\). Following previous researchers (e.g., Peng & Wang, 2006), the homogeneity assumption of the MANOVA were checked using the following criteria. The assumption of homogeneity of variance-covariance matrices was satisfied because the Box’s M test was not significant \((p > .05)\) and the Levene’s test of equality of error variances was not significant for the high-involvement SMEB \((p > .05)\). However, the Levene’s test was significant for the low-involvement SMEB \((p < .05)\), which is a violation of the assumption of equality of variances. Therefore, the interpretation of the univariate F-test will be stricter and we use a lower alpha (.025) and Pillai’s trace to interpret the multivariate test results, as suggested by Tabachnick et al. (2019).

Hypothesis 1

The influence of argument quality on the two SMEB variables was significant according to the Pillai’s trace statistic \((F(2) = 30.685, p < .001, \text{Partial Eta}^2 = .275)\). As shown in Table 3, the estimated marginal mean of \(\ln(\text{High Involvement SMEB}) \) was significantly higher when argument quality was present \((M = 5.638)\) compared to when argument was absent \((M = 5.321, F(1) = 2.237, p < .05)\). The result was reflected in the significant relationship between argument quality and \(\ln(\text{High Involvement SMEB}) \) \((B = .317, p = .05)\), and the presence of argument quality was associated with a roughly 32% increase in high-involvement SMEB. There was no relationship between argument quality and \(\ln(\text{Low Involvement SMEB}) \) \((p > .05)\). Therefore, H1 was supported.

Hypothesis 2

The influence of source credibility on the two SMEB variables was very weak according to the Pillai’s trace statistic \((F(2) = 2.497, p = .086, \text{Partial Eta}^2 = .030)\). Source credibility did not influence \(\ln(\text{High Involvement SMEB}) \) significantly \((p > .05)\). Therefore, H2a was not supported. The impact of source credibility on \(\ln(\text{Low Involvement SMEB}) \) was marginal considering the equality of variance issue on \(\ln(\text{High Involvement SMEB}) \) \((F(1) = 5.023, p = .026)\), but it is worth reporting. The estimated marginal mean of \(\ln(\text{Low Involvement SMEB}) \) was higher when source credibility was high \((M = 7.384)\) compared to when source credibility was low \((M =
7.175). The result was reflected in the significant relationship between source credibility and \(\ln(\text{Low Involvement SMEB}) \) (\(B = .209, p = .026 \)), and a higher level of source credibility was associated with roughly a 21% increase in low-involvement SMEB. Although the interpretation of H2b result was influenced by the equality of variance issue on \(\ln(\text{High Involvement SMEB}) \), we believe that the predicted relationship, which is suggested in the literature, exists.

Hypothesis 3

The influence of emotion on the two SMEB variables was significant according to the Pillai’s trace statistic \(F(2) = 11.572, p < .001 \), Partial \(\eta^2 = .125 \). The estimated marginal mean of \(\ln(\text{High Involvement SMEB}) \) was significantly higher when emotion was present (\(M = 5.721 \)) compared to when emotion was absent (\(M = 5.238, F(1) = 14.378, p < .001 \)). The result was reflected in the significant relationship between emotion and \(\ln(\text{High Involvement SMEB}) \) (\(B = .483, p < .001 \)), and the presence of emotion was associated with roughly a 48% increase in high-involvement SMEB. Consequently, H3a was supported. Similarly, the estimated marginal mean of \(\ln(\text{Low Involvement SMEB}) \) was significantly higher when emotion was present (\(M = 7.517 \)) compared to when emotion was absent (\(M = 7.042, F(1) = 23.257, p < .001 \)). The result was reflected in the significant relationship between emotion and \(\ln(\text{Low Involvement SMEB}) \) (\(B = .475, p < .001 \)), and the presence of emotion was associated with a 47.5% increase in low-involvement SMEB. Therefore, H3b was supported.

To further understand the difference of emotion’s impact on high- and low-involvement SMEB, Cumming’s (2009) method was used. Following Cumming (2009), we used Z-scores in the model, and then compared the Confidence Intervals (CIs) between the two coefficients. The same method was applied in the following comparisons of coefficients. The CIs of the coefficient between the Z-scores of emotion and \(\ln(\text{High Involvement SMEB}) \) (\(B = .533 \)) were from .255 to .810; and the CIs of the coefficient between the Z-scores of emotion and \(\ln(\text{Low Involvement SMEB}) \) (\(B = .712 \)) were from .421 to 1.004. Half of the average of the overlapping confidence intervals was calculated (.142) and added to the low-involvement SMEB’s lower bound (.421), which yielded .563. The difference between the two coefficients was not significant (\(p > .05 \)) because the high-involvement SMEB upper bound (.810) exceeded the value of .563.

Hypothesis 4

The influence of valence on the two SMEB variables was significant according to the Pillai’s trace statistic \(F(2) = 30.685, p < .001 \), Partial \(\eta^2 = .275 \). The estimated marginal mean of \(\ln(\text{High Involvement SMEB}) \) was significantly higher when the valence was negative (\(M = 5.956 \)) compared to when the valence was positive (\(M = 5.003, F(1) = 52.049, p < .001 \)). The result was reflected in the significant relationship between valence and \(\ln(\text{High Involvement SMEB}) \) (\(B = -.953, p < .001 \)), and the negative valence was associated with more than a 95% increase in high-involvement SMEB. Therefore, H4a was supported. The estimated marginal mean of \(\ln(\text{Low Involvement SMEB}) \) was significantly higher when the valence was negative (\(M = 7.458 \)) compared to when the valence was positive (\(M = 7.101, F(1) = 12.219, p < .01 \)). The result was reflected in the significant relationship between valence and \(\ln(\text{Low Involvement SMEB}) \) (\(B = -.357, p < .001 \)), and the negative valence was associated with roughly a 36% increase in low-involvement SMEB. This result was contradictory to the prediction, therefore, H4b was not supported.
The CIs of the coefficient between the Z-scores of valence and \(\ln(\text{High Involvement SMEB}) \) (B = -1.052) were from -1.340 to -0.764; and CIs of the coefficient between the Z-scores of valence and \(\ln(\text{Low Involvement SMEB}) \) (B = -0.536) were from -0.838 to -0.233. The difference between the two coefficients was significant and the influence of negative valence on low-involvement SMEB was weaker (p < .05).

Hypothesis 5

The influence of visual symbolism on the two SMEB variables was significant according to the Pillai’s trace statistic \((F(2) = 7.924, p < .01, \text{Partial Eta}^2 = .275) \). The estimated marginal mean of \(\ln(\text{High Involvement SMEB}) \) was significantly higher when the visual symbolism was present \((M = 5.726) \) compared to when the visual symbolism was absent \((M = 5.232, F(1) = 6.095, p < .05) \). There was a positive relationship between visual symbolism and \(\ln(\text{High Involvement SMEB}) \) (B = .494, p < .001), and the presence of the visual symbolism was associated with roughly a 49% increase in high-involvement SMEB. Therefore, H5a was supported. The estimated marginal mean of \(\ln(\text{Low Involvement SMEB}) \) was significantly higher when the visual symbolism was present \((M = 7.583) \) compared to when the visual symbolism was absent \((M = 6.977, F(1) = 15.304, p < .001) \). The result was reflected in the significant relationship between visual symbolism and \(\ln(\text{Low Involvement SMEB}) \) (B = .606, p < .001), and the presence of the visual symbolism was associated with roughly a 61% increase in low-involvement SMEB. Therefore, H5b was supported.

The CIs of the coefficient between the Z-scores of visual symbolism and \(\ln(\text{High Involvement SMEB}) \) (B = .545) were from .109 to .982; and the CIs of the coefficient between the Z-scores of visual symbolism and \(\ln(\text{Low Involvement SMEB}) \) (B = .909) were from .450 to 1.368. The difference between the two coefficients was not significant (p > .05).

Hypothesis 6

A linear regression was used to test the relationships between SMEB and relationship quality (H6a and H6b, see Table 5). Relationship quality was not normally distributed \((p \text{ value of the Kolmogorov-Smirnov test} < .05) \). It was transformed using the natural log function. After the transformation, \(\ln(\text{Relationship Quality}) \) ranged from 1.07 to 4.35 \((M = 3.336; SD = .536) \). There was no issue with collinearity because the values of Variance Inflation Factors (VIF) were lower than 5. There was no normality issue according to the P-P Plot of regression standardised residual (Hair et al., 2010; Pallant, 2016). The model was good \((F(2,166) = 39.711, p < .001) \) and more than a 32% of the variance was explained by the model. \(\ln(\text{High Involvement SMEB}) \) was positively and significantly related to \(\ln(\text{Relationship Quality}) \) (B = .114, p < .05), and one percent increase in high-involvement SMEB was associated with about an 11% increase in relationship quality. Therefore, H6a was supported. \(\ln(\text{Low Involvement SMEB}) \) was positively and significantly related to

<table>
<thead>
<tr>
<th>DV: (\ln(\text{Relationship Quality}))</th>
<th>B</th>
<th>Std. Error</th>
<th>Beta</th>
<th>t</th>
<th>p-value</th>
<th>95% CI for B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>.333</td>
<td>.386</td>
<td>.863</td>
<td>.389</td>
<td></td>
<td>-0.429 to 0.95</td>
</tr>
<tr>
<td>(\ln(\text{High Involvement SMEB}))</td>
<td>.114</td>
<td>.056</td>
<td>.193</td>
<td>.054</td>
<td>.042</td>
<td>.004 to .224</td>
</tr>
<tr>
<td>(\ln(\text{Low Involvement SMEB}))</td>
<td>.331</td>
<td>.076</td>
<td>.412</td>
<td>.378</td>
<td>.000</td>
<td>.182 to .480</td>
</tr>
</tbody>
</table>

DV = dependant variable; B = unstandardised coefficient; Beta = standardised coefficient; CI = Confidence Interval.
\(\ln(\text{Relationship Quality}) \) \((B = .331, p < .001) \), and one percent increase in low-involvement SMEB was associated with a 33% increase in relationship quality. Therefore, \(H_6b \) was supported. The CIs of the coefficient between the Z-scores of \(\ln(\text{High Involvement SMEB}) \) and \(\ln(\text{Relationship Quality}) \) \((\beta=.193) \) were from .007 to .379; and CIs of the coefficient between the Z-scores of \(\ln(\text{Low Involvement SMEB}) \) and \(\ln(\text{Relationship Quality}) \) \((\beta=.412) \) were from .226 to .597. The difference between the two coefficients was not significant \((p > .05) \).

To confirm the results and to further explore the potential mediation effect of the SMEB variables, Hayes’ Process Model 4 was used in SPSS (see Figure 2; A. F. Hayes, 2013). PROCESS was used due to its advantages in analysing dichotomous independent variables and its ability to test multiple mediators simultaneously (A. F. Hayes, 2012). The recommended bias-corrected (BC) confidence intervals (CI) and 5000 bootstrap samples were used. PROCESS only allows the investigation of a single independent variable. However, this limitation of the software is resolvable as PROCESS allows the inclusion of covariates. Mathematically, PROCESS treats covariates and independent variables similarly (Hayes, 2012).

In the PROCESS analysis, all of the results given here and the tested relationships were confirmed (see Table 6). The variance explained for \(\ln(\text{High Involvement SMEB}) \), \(\ln(\text{Low Involvement SMEB}) \) and \(\ln(\text{Relationship Quality}) \) were 31.1% \((F(5,163) = 14.738, p < .001) \), 23.9% \((F(5,163) = 10.219, p < .001) \) and 35.7% \((F(7,161) = 12.746, p < .001) \) respectively. A set of mediation tests were conducted for each of the independent variables (i.e. MGC cues).

Neither \(\ln(\text{High Involvement SMEB}) \) nor \(\ln(\text{Low Involvement SMEB}) \) mediated the relationship between argument quality and \(\ln(\text{Relationship Quality}) \). \(\ln(\text{Low Involvement SMEB}) \) \((\text{effect} = .052, \text{Bootstrap SE} = .034, \text{Bootstrap CI} [.002130]) \) mediated the relationship between source credibility and \(\ln(\text{Relationship Quality}) \). It was a partial mediation because the direct effect between source credibility and \(\ln(\text{Relationship Quality}) \) was significant \((B = .190, p < .05) \), and the other relationships in the mediation (i.e. from independent variable to the mediator, and from the mediator to the dependent variable) were significant, as reported earlier in the paper.

Both \(\ln(\text{High Involvement SMEB}) \) \((\text{effect} = .097, \text{Bootstrap SE} = .041, \text{Bootstrap CI} [.025186]) \) and \(\ln(\text{Low Involvement SMEB}) \) \((\text{effect} = .117, \text{Bootstrap SE} = .061, \text{Bootstrap CI} [.016255]) \) mediated the relationship between emotion and \(\ln(\text{Relationship Quality}) \). They were partial mediations because the direct effect between emotion and \(\ln(\text{Relationship Quality}) \) was significant \((B = .231, p < .01) \), and the other relationships in the mediation (i.e. from

![Figure 2. Hayes’ PROCESS Model 4.](image-url)
Table 6. PROCESS results.

<table>
<thead>
<tr>
<th>DV: Ln(\text{High Involvement SMEB})</th>
<th>B</th>
<th>Std. Error</th>
<th>Beta</th>
<th>t</th>
<th>p-value</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>4.96</td>
<td>.218</td>
<td>22.943</td>
<td>.000</td>
<td></td>
<td>4.567</td>
<td>5.426</td>
</tr>
<tr>
<td>Argument Quality</td>
<td>.317</td>
<td>.162</td>
<td>.350</td>
<td>1.960</td>
<td>.050</td>
<td>.002</td>
<td>.636</td>
</tr>
<tr>
<td>Source Credibility</td>
<td>.209</td>
<td>.121</td>
<td>.116</td>
<td>1.732</td>
<td>.085</td>
<td>−.029</td>
<td>.447</td>
</tr>
<tr>
<td>Emotion</td>
<td>.483</td>
<td>.127</td>
<td>.250</td>
<td>3.792</td>
<td>.000</td>
<td>.231</td>
<td>.734</td>
</tr>
<tr>
<td>Valence</td>
<td>−.353</td>
<td>.132</td>
<td>−.515</td>
<td>−7.215</td>
<td>.000</td>
<td>−1.214</td>
<td>−.692</td>
</tr>
<tr>
<td>Visual Symbolism</td>
<td>.494</td>
<td>.200</td>
<td>.181</td>
<td>2.469</td>
<td>.015</td>
<td>.099</td>
<td>.889</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DV: Ln(\text{Low Involvement SMEB})</th>
<th>B</th>
<th>Std. Error</th>
<th>Beta</th>
<th>t</th>
<th>p-value</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>6.677</td>
<td>.168</td>
<td>39.649</td>
<td>.000</td>
<td></td>
<td>6.344</td>
<td>7.009</td>
</tr>
<tr>
<td>Argument Quality</td>
<td>−.144</td>
<td>.125</td>
<td>−.217</td>
<td>−1.155</td>
<td>.250</td>
<td>−.391</td>
<td>.102</td>
</tr>
<tr>
<td>Source Credibility</td>
<td>.209</td>
<td>.093</td>
<td>.157</td>
<td>2.241</td>
<td>.026</td>
<td>.025</td>
<td>.393</td>
</tr>
<tr>
<td>Emotion</td>
<td>.475</td>
<td>.098</td>
<td>.335</td>
<td>4.823</td>
<td>.000</td>
<td>.280</td>
<td>.669</td>
</tr>
<tr>
<td>Valence</td>
<td>−.357</td>
<td>.102</td>
<td>−.262</td>
<td>−2.908</td>
<td>.000</td>
<td>−.559</td>
<td>−.155</td>
</tr>
<tr>
<td>Visual Symbolism</td>
<td>.606</td>
<td>.155</td>
<td>.301</td>
<td>3.912</td>
<td>.000</td>
<td>.299</td>
<td>.911</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DV: Ln(\text{Relationship Quality})</th>
<th>B</th>
<th>Std. Error</th>
<th>Beta</th>
<th>t</th>
<th>p-value</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>.234</td>
<td>.423</td>
<td>.554</td>
<td>.581</td>
<td></td>
<td>−.602</td>
<td>1.070</td>
</tr>
<tr>
<td>Ln(\text{High Involvement SMEB})</td>
<td>.201</td>
<td>.070</td>
<td>.340</td>
<td>2.886</td>
<td>.004</td>
<td>.064</td>
<td>.339</td>
</tr>
<tr>
<td>Ln(\text{Low Involvement SMEB})</td>
<td>.247</td>
<td>.090</td>
<td>.307</td>
<td>2.736</td>
<td>.007</td>
<td>.069</td>
<td>.425</td>
</tr>
<tr>
<td>Argument Quality</td>
<td>.002</td>
<td>.099</td>
<td>.003</td>
<td>.018</td>
<td>.985</td>
<td>−.193</td>
<td>.197</td>
</tr>
<tr>
<td>Source Credibility</td>
<td>.097</td>
<td>.070</td>
<td>.091</td>
<td>1.374</td>
<td>.171</td>
<td>−.042</td>
<td>.236</td>
</tr>
<tr>
<td>Emotion</td>
<td>.017</td>
<td>.078</td>
<td>.015</td>
<td>.218</td>
<td>.828</td>
<td>−.137</td>
<td>.172</td>
</tr>
<tr>
<td>Valence</td>
<td>.208</td>
<td>.089</td>
<td>.190</td>
<td>2.331</td>
<td>.021</td>
<td>.032</td>
<td>.384</td>
</tr>
<tr>
<td>Visual Symbolism</td>
<td>.021</td>
<td>.121</td>
<td>.013</td>
<td>.170</td>
<td>.865</td>
<td>−.218</td>
<td>.259</td>
</tr>
</tbody>
</table>

$DV =$ dependant variable; $B =$ unstandardised coefficient; $Beta =$ standardised coefficient; $CI =$ Confidence Interval. To avoid confusion, the direct effects of the independent variables on the dependent variable are reported in the paper.

The independent variable to the mediator, and from the mediator to the dependent variable) were significant, as reported earlier in the paper.

Similarly, both Ln(\text{High Involvement SMEB}) (effect = −.192, Bootstrap SE = .068, Bootstrap CI [−.335, −.066]) and Ln(\text{Low Involvement SMEB}) (effect = −.088, Bootstrap SE = .051, Bootstrap CI [−.203, −.010]) mediated the relationship between valence and Ln(\text{Relationship Quality}). They were full mediations because the direct effect between valence and Ln(\text{Relationship Quality}) was not significant (B = −.072, $p > .05$), but the other relationships in the mediation were significant.

Both Ln(\text{High Involvement SMEB}) (effect = .099, Bootstrap SE = .051, Bootstrap CI [.017216]) and Ln(\text{Low Involvement SMEB}) (effect = .149, Bootstrap SE = .078, Bootstrap CI [.025325]) mediated the relationship between visual symbolism and Ln(\text{Relationship Quality}). They were partial mediations because the direct effect between visual symbolism and Ln(\text{Relationship Quality}) was significant (B = .269, $p < .05$), and the other relationships in the mediation were significant.

Qualitative phase

In the qualitative phase, we elaborate on the findings of the quantitative phase. Specifically, we investigate likes and shares, and attempt to understand the distinctions between the two. We conduct semi-structured interviews with eighteen participants. The sample size is substantially higher than what is required in sequential explanatory mixed-methods studies (Baheirea et al., 2014; Cantarelli et al., 2020; Ivankova et al., 2006). Semi-structured interviews are considered ideal since they confirm and extend existing theory.
(McIntosh & Morse, 2015). The sample comprises social media users who had shared and liked political MGC in the past. All participants were eligible voters. The purpose of the interviews was to gain a more nuanced understanding of likes and shares in the political context (Mele & Belardinelli, 2019). Semi-structured interviews require a purposive approach to sampling. This can be done using convenience or snowball techniques (McIntosh & Morse, 2015). We recruited participants by posting the eligibility criteria on Facebook pages dedicated to politics. Participants were incentivised via gift vouchers.

The participants were aged between eighteen and thirty-four. Only two participants were students. The remaining participants worked full-time or were self-employed. The participants were predominantly male (only one female) and well-educated. This is understandable since well-educated males are most likely to engage with political brands on social media (Bode & Dalrymple, 2016). Additionally, users aged between 18–34 are the largest segment on Facebook (Statista Research Department, 2021). The participants varied in their nationalities. The interviews were held in-person or online and were recorded. The average interview lasted twenty-four minutes, with a minimum of sixteen and a maximum of thirty-seven minutes. The interview protocol comprised general questions about sharing and liking political MGC and the differences between the two activities. This was followed by probing questions (McIntosh & Morse, 2015). The interviewer also utilised prompts from relevant literature (e.g., Penney, 2016; Wallsten, 2011).

Qualitative data analysis was performed using NVivo. We followed a deductive approach, relying on a-priori codes (Fereday & Muir-Cochrane, 2006). This is known as a directed content analysis (Hsieh & Shannon, 2005). Deductive codes were derived from the ELM, research questions and the relevant literature on political SMEB. Theoretical or deductive codes ensure validity (Braun & Clarke, 2006). A coding scheme was developed prior to transcript analysis to ensure reliability (Hsieh & Shannon, 2005; Morse, 2015). Similarly, we provide thick extracts to ensure reliability (Noble & Smith, 2015). We condense various codes in light of the ELM. This is appropriate since the ELM serves as the theoretical basis of our study (Linneberg & Korsgaard, 2019). We primarily focus on motivation and ability, which determine an individual’s likelihood to elaborate on a message (Petty & Cacioppo, 1986).

Findings (qualitative phase)

The participants differed in the extent to which they shared. Generally, participants had an interest in politics. All participants were ardent supporters of a political brand. In several cases, participants allowed us access to their walls, which helped us to understand their thought process behind sharing or liking different political MGCs. The participants predominantly discussed sharing, which was due to sharing being a multi-faceted activity.

Shares

Motivations. A major reason why participants shared political MGC was to initiate a social conversation or socialise with others. Sharing was an invitation for further engagement. Participants valued others’ comments since they provided prolonged engagement. Participants added captions and tagged their friends to induce direct engagement from them. They tagged like-minded friends as well as those friends who held dissimilar views. Participants acknowledged that their peers appreciated the content
that they shared, however social recognition was not an influential driver of sharing political MGC. The following quotes demonstrate these findings:

Basically, I am very active socially. I was a sportsman and took part in university clubs. I get a lot of comments (on shared political MGC) so there is a lot of discussion.

Sometimes, there is a discussion between friends, and I share and tag my friends and comment if they are wrong. Sometimes, you require proof through which you can gain their attention, like this is what we were talking about that day, and this is the evidence.

Not everyone likes it when I share. But there are only two or three people who would jump to debate me. Most people appreciate it and I get good feedback.

Political motivations were another major factor. Participants shared political MGC to persuade other voters and promote or support their preferred political brand, ideology or issues that had personal relevance to them. Statistics and comparative figures were considered ideal for these. Likewise, participants were motivated by information-giving. Several participants wanted to provide information to others and create awareness on issues. These views of the participants are summed up by the following quotes:

I have an uncle who is very active on social media. My shares are often directed at him. I write a caption. I just want him to look at it logically, with reason.

If it is related to something very serious or if it is an important statistic which shows that whatever he (politician) has said, he has done, I will share.

I’ll only share the environmental (content), like the Green’s stuff on environmental damage, mainly the informational stuff showing the severity of it and the damage being done so that people know the actual impact they have.

Some participants saw sharing political MGC as a means of expressing themselves and giving their opinion, whereas other participants saw it as a means of expressing their affection for their favourite politician. Interestingly, participants were actively aware that the shared content was seen on their wall and represents their views. In certain cases, participants intentionally provoked other individuals or responded to their perceived provocation by sharing political MGC, which may be seen as a ‘sharing competition’ between two individuals (with or without tagging) with opposing political affinities. Coming across opposing views triggered sharing. The following quotes sum up these findings:

In my view, ‘like’ is a casual reaction for a post that you like but with sharing you can also add your opinion about what you think of it, whether you agree with it or not, which is everyone’s right.

Because I have seen that they have shared on their wall in support of their party and those things are sometimes wrong, like sweeping statements. So if you see something similar and authentic related to that, you share on your own wall so people can see. I often tag those friends some times.

When I want to provoke my friends to make them angry, just to tease them, I will share his posts (political MGC).

Additionally, participants acknowledged civic motivations. A few participants hoped to create a thoughtful dialogue. Participants felt that sharing certain types of political MGC
was their civic responsibility. Similarly, sharing was a way of holding political brands accountable. By accompanying political MGC with a negative comment, participants reminded political brands of their promises or shortcomings. In the words of the participants:

I like to share content that shows what they say before coming into government to remind them of their commitments. Criticisms on wrong policy is our right. Accountability needs to be there.

As a citizen, I think it is my responsibility. I have between 1000 and 1500 followers, so I think it is my duty that the information reaches them, even if only one or two understand it.

Everybody is political to some extent. If you ask why I share, everyone has a stake in it, whether a millionaire or a milkman. In the end, the government will be for everyone and not a particular cohort. It is a democracy and everyone has an opinion and we need that.

Ability
Besides motivation, certain abilities and resources were also discussed by participants. Participants acknowledged that sharing required prior knowledge, time and effort. Participants discussed having prior knowledge of the topic brought up in the political MGC. They also believed that they comprehended the message sufficiently and were well-equipped to discuss the message in the aftermath of sharing. Besides cognitive resources, it was observed that sharing requires dedication of time. Prior to sharing, participants discussed having to assess the value and appropriateness of the political MGC and whether they were oversharing. Some participants went as far as verifying the accuracy of information in the political MGC before sharing. The following quotes highlight these findings:

A couple of times I shared a few posts and people in the comments gave logical answers and reasons. So after that I started to do some research on the content before sharing.

I try to make sure that when I share, it is something I can defend when I am challenged on it. So later on, I do not face embarrassment.

Anything that I agree with I’ll just like, but maybe things that’ll stop me from sharing it would be like it’s a bit controversial. So maybe I won’t share it and I’ll just like it.

Likes
Motivations. The primary reason for liking a post was supporting the message or the political brand. It was seen as an approval or an agreement with the political MGC. Liking was also seen as a way to express affection or love for a political brand. Scrolling through and liking political MGC was a form of entertainment for those interested in politics as well as a way to maintain a connection with the political brand. Participants were driven by affect when liking a post. The visual component of the post also played a role in driving ‘likes’. The following responses confirm these findings:

I like his posts. He is a good person, honest person. He might not have all the solutions but he is way better than others. I have always been a big fan.

You associate yourself with one party. You can only vote for one of them in the election. So when liking their content, I see if I can associate with the message or if it resonates with me. That becomes a deciding factor.
Sixty to seventy percent of the content I see is political. My friends and those I know ‘like’ the posts to support their parties and I do it to support my party or their opinion.

Likes v/s shares. Participants revealed that shares are the advanced or the next level of likes and that sharing required the content to filter through some preliminary criteria (discussed earlier). Sharing meant an ownership of the message whereas liking was seen as an approval. Liking was significantly more frequent than sharing. Compared to likes, sharing was reserved for content of greater relevance and meaning. Likes were deemed a more personal or confidential response, whereas sharing was seen as an indication of die-hard support or devotion to a particular issue or political brand. Finally, the participants understood that sharing political MGC comes with social risks like online arguments, blocking or unfriending. The participants’ views are expressed in the following responses:

With sharing you want others to view what you kind of like strongly believe in or what you kind of promote, like a politician or a footy team, whereas liking is pretty much confidential now.

Sharing is more intense. If someone is liking a post, I would say that he is not doing it with much intent, but when they are sharing it, they are doing it with an intention to let other people know. I mean, I am so convinced that I want other people to also be convinced.

In my assessment, there are two types of followers. One is simply a voter but the other is a diehard supporter. They are the ones who share. By liking, I acknowledge that I agree with the message, like I have understood it. But when I go the next level, then obviously share is the next form of like.

Discussion and implications

We offer insights into how MGC leads to SMEB, which leads to stronger relationships. All but two hypotheses were accepted. Firstly, the positive effect of source credibility on high-involvement SMEB was not significant ($p = .085$). Secondly, the effect of negative valence on low-involvement SMEB was significant but contrary to the direction hypothesised. Overall, our findings are in line with the ELM. For instance, negative valence had a stronger effect on high-involvement SMEB than low-involvement SMEB. The dual effects of peripheral cues are also in line with the ELM literature. Similarly, the argument quality also behaved as per the propositions of the ELM. Although source credibility’s impact on high-involvement SMEB was not verified, its primary effect in low-involvement situations was confirmed. Thus, our results justify the selection of the ELM as our study’s underpinning theory.

Further, we proposed that sharing is a higher involvement activity than liking, requiring greater elaboration. Our qualitative analysis offers evidence that supports this proposition. Semi-structured interviews reveal that sharing involves dedication of greater cognitive and time resources and commitment. These findings are consistent with recent literature on SMEB that categorise sharing as being a more active form of engagement than liking, requiring greater cognitive effort and commitment (e.g. Kim & Yang, 2017; Swani & Labrecque, 2020). Further, the findings affirm that sharing political MGC requires
elaborate decision-making rather than impulsive decision-making (Hossain et al., 2018), which is associated with likes. We find that political MGC is shared to satisfy a range of gratifications and motivations including social, self-expression, self-presentation, informational, political, and civic (e.g. Hossain et al., 2018; Liu et al., 2017; Parmelee & Roman, 2019). Likes are mainly driven by entertainment, affection, support, sensory content, and the need to maintain a social connection with the political brand (e.g. Khan, 2017; Kim & Yang, 2017; Swani & Labrecque, 2020). Unlike likes, sharing requires certain resources like having prior knowledge and time. Similarly, sharers are ideologues who use sharing during political disagreements, to either provoke democratic dialogue or criticise opponents (Penney, 2016; Wallsten, 2011). Unlike prior literature, we find limited evidence of self-promotion and social presence. Finally, motivations or gratifications are dependent on the type of content also (informative, entertaining, etc.) (Dolan et al., 2016).

Marketer-generated content and social media engagement behaviour

In line with the central tenet of the ELM, argument quality influences high-involvement SMEB only, which shows that sharing requires a higher level of elaboration than liking. This demonstrates that sharers are engaged with the political MGC and are more likely to activate the central route when processing the content (Petty & Cacioppo, 1986). The findings are consistent with the literature in the field of political SMEB, which shows that logic (logos) does not impact likes but has an effect on comments and shares (Bronstein, 2013; Gerodimos & Justinussen, 2014; Samuel-Azran et al., 2015). This demonstrates that an argument’s place in politics is not diminished yet, however it is limited to followers who are highly engaged.

Sharing requires significant cognitive resources and time, along with an assessment of the political MGC’s appropriateness and value. Therefore, it is logical that it is driven by not only affective but strategic and rational reasons also (Kim & Yang, 2017; Swani & Labrecque, 2020). Stronger arguments help sharers satisfy diverse motivations like winning political arguments and debates, spreading information, persuading others, promoting their preferred brand, and expressing themselves.

The analysis shows that the content’s source credibility has a significant but weak relationship with low-involvement SMEB. The relationship is in line with the literature, and the relatively small effect is explicable. In a polarised and post-truth era, the content’s source credibility is less meaningful. Yet another explanation is that followers assess the credibility of the content sharer and not the content’s source credibility (Sterrett et al., 2019; Turcotte et al., 2015). Moreover, studies show that social media users are blind to the source of the content and the banners associated with it (Boerman & Kruikemeier, 2016). Additionally, political followers are driven by motivated reasoning (Sloothuus & De Vreese, 2010).

Traditionally, researchers utilising the ELM have refrained from researching emotion. Our research is among the few studies that integrate the emotional component of the content, and confirms the scant literature that highlights the dual effects of emotion in high- and low-involvement situations (Morris et al., 2005). The study demonstrates that emotions have a strong effect on high-involvement SMEB, which happens through the central route when emotions act as an argument, or trigger biased thinking in social media followers (Morris et al., 2005; Petty & Briñol, 2015). Expectedly, emotions are the
strongest predictor of low-involvement SMEB. This validates past research which shows that pathos (emotion) is the most effective rhetorical appeal in driving likes in the political context (Bronstein, 2013; Gerodimos & Justinussen, 2014; Samuel-Azran et al., 2015). The same is true for political retweets (Walker et al., 2017). The same holds outside the political context (Berger & Milkman, 2012; Tellis et al., 2019). Therefore, emotions are highly effective in engaging followers with varying levels of engagement.

Valence is a cue that has distinct impacts in high- and low-involvement conditions (Faber et al., 1993; Hayes et al., 2018). We find that high-involvement SMEB is driven by negative valence. This is in line with a similar content analysis of British politicians’ Twitter pages (Walker et al., 2017). It is logical because negative information is perceived as diagnostic in nature, demanding greater elaboration (Teng et al., 2017). Our qualitative findings affirm this conclusion. Negatively valenced political MGC was frequently shared by participants to satisfy political motivations, like attacking political brands or criticising them and expressing personal views or emotions, mainly anger and frustration. However, negative valence’s effect on low-involvement SMEB is contrary to our hypothesis. Negative valence had a significant, positive impact on low-involvement SMEB. This demonstrates that in the current climate of political partisanship, polarisation and animosity (Pew Research Centre, 2019b), negative valence is highly effective, which explains why negative campaigning is on the rise (Borah et al., 2018). It is worth noting that statistically, low-involvement SMEB and high-involvement SMEB responded as per the ELM, i.e. negative valence had a stronger impact on high-involvement SMEB. This shows that negative valence creates greater involvement which involves more thoughts and elaborations from the receivers. This leads to the central route being activated. Therefore, they generate stronger impacts on high SMEB (shares) than low SMEB (likes). Our study corroborates the ELM literature that is devoted to visual symbolism. Like religious and sacred symbols (Dotson & Hyatt, 2000; Lumpkins, 2010), patriotic symbols have a positive impact on information processing in high- and low-involvement conditions (Dotson & Hyatt, 2000; Lumpkins, 2010).

Social media engagement behaviour and relationship quality

The results demonstrate that SMEB, whether high- or low-involvement, is a driver of relationship quality. This is consistent with prior literature that establishes the significance of engagement with official social media pages in driving followers’ relationship quality (Achen, 2016; Clark et al., 2017). Other studies show that social media engagement generates trust, commitment and satisfaction (Agnihotri et al., 2016; Habibi et al., 2014; Turri et al., 2013), along with the development of emotional bonds (Sashi, 2012). Therefore, it is unsurprising that SMEB influences relationship quality.

The mediation results show that SMEB plays an important mediating role between peripheral cues and relationship quality. Source credibility, emotion and visual symbolism directly influence SMEB and relationship quality. Negative valence, however, without a positive impact on SMEB, did not impact relationship quality. This is consistent with prior literature. Posts with negative valence are less effective at cultivating relationships (Orben & Dunbar, 2017). Therefore, negative valence can generate engagement, but it is less effective at strengthening online relationships with followers.
Theoretical implications

This study contributes to the field of social media marketing. It is one of the first studies to focus on the roles of both MGC and SMEB in the cultivation of online relationships. Numerous studies focus on MGC’s effect on SMEB (e.g. Abid et al., 2019; Ashley & Tuten, 2015; Dolan et al., 2019; Tafesse & Wien, 2018) and SMEB’s effect on the quality of the relationship (Achen, 2016; Clark et al., 2017). However, studies integrating MGC, SMEB and relationship variables remain absent in the literature. We offer a conceptual framework that links MGC, SMEB and relationship quality. We contribute to social media marketing by focusing on relatively unexplored content-based drivers of likes and shares. Moreover, prior studies show that following and engaging with the official social media channels of brands lead to stronger relationships (Achen, 2016; Clark et al., 2017). We add to this stream of knowledge by demonstrating a similar effect of liking and sharing on relationship quality.

There are very few studies that treat shares and likes distinctly (Kim & Yang, 2017; Swani & Labrecque, 2020). Our study goes a step further. It delineates likes and shares and sheds an in-depth qualitative light on the differences between these essential SMEB activities, which is missing in the prior literature. We offer evidence that activities within the seven types of SMEB also vary in their intensity. We demonstrate that shares require a greater degree of elaboration and are triggered by both affect and arguments. This has implications for online content analyses of social media pages because dual-process theories like the message appeal (rational/emotional) and heuristic-systematic model are widely used to investigate MGC. Similarly, likes and shares are the most frequently explored SMEB activity. By lumping the social media responses together, researchers miss out on a deeper understanding.

Our study adds to the literature in the field of relationship marketing. Much of the literature at the intersection of social media marketing and relationship marketing focuses on engagement behaviour (Achen, 2016; Clark et al., 2017). The MGC’s role in the development of relationships is underexplored in the literature (e.g. Abid et al., 2019). We introduce a content-centric approach to understanding relationships on social media. Content is integral to social media, and its impact on relationships merits investigation. We highlight the various content cues that impact relationship quality both directly and indirectly.

We confirm the effect of emotions as an ELM cue. Few studies embedded in the ELM integrate emotions, and fewer validate its dual effects in high- and low-involvement conditions (Manca et al., 2020; Morris et al., 2005; Xiang et al., 2019). The study also expands the ELM literature by applying it in the context of political and social media marketing. Few studies use the ELM to understand the effects of political content on social media. Besides this, we contribute to the ELM by adding to the list of peripheral cues that have been identified in the literature. Patriotic symbols are an essential component of political imagery, and their efficacy as peripheral cues had not been established. Similarly, the content’s source credibility is a cue that had not been investigated previously. We demonstrate that the source of the content has an effect in low-involvement situations and that social media users rely on this cue when engaging with MGC. Notably, we confirm that peripheral cues affect behaviour in both low- and high-involvement situations (Dotson & Hyatt, 2000; Lumpkins, 2010).
Finally, our study contributes to political marketing, which has seen limited integration of contemporary marketing thought and concepts (Perannagari & Chakrabarti, 2020). Relationship marketing, the dominant paradigm of marketing, has witnessed limited occurrence in the political marketing literature (Harris & Harrigan, 2015; Parsons & Rowling, 2018). By understanding the underlying mechanism that drives online relationships on social media, we add to the limited body of literature that explores voter relationships (e.g. Abid et al., 2019; Hultman et al., 2019). Similarly, the ELM, which is frequently used in persuasion studies, has witnessed limited utilisation in the political context. Furthermore, political marketing literature predominantly focuses on Twitter (Walker et al., 2017) and studies exploring other platforms are fewer. We rectify this shortcoming by focusing on Facebook, which is a more popular platform. Our qualitative phase contributes to the political marketing literature by highlighting the motivations and resources driving engagement with political MGC on social media.

Managerial implications

Our findings have implications for political brands and their social media managers. Political brands should take a holistic approach that prompts and gauges both low- and high-involvement SMEB. The latter is of particular importance since it opens up an otherwise untapped audience. Based on our findings, we recommend the use of argument quality, negative valence and emotion to generate high-involvement SMEB. For instance, they should be utilised when the mobilisation of core supporters is required. Similarly, the number of shares should be seen as the opinion of the highly-engaged followers. Additionally, it is recommended that the reception of arguments should be gauged through high-involvement SMEB rather than low-involvement SMEB. If the aim is to reach a more general audience, which usually has a low level of involvement in politics, we recommend the use of emotions, credible sources and visual symbolism.

Political brands should design MGC that strengthen online relationships, in addition to generating SMEB. Emotions, credible sources and visual symbolisms are ideally suited to achieve this. Similarly, we encourage the use of credible sources when relying on an argument’s strength, as this can stimulate both forms of SMEB. Regarding high-involvement SMEB, political brands should realise that their supporters share political MGC for a variety of motivations. Political MGC, therefore, should be designed accordingly, accommodating voters with varying motivations. Well-presented statistics, for instance, help supporters win arguments and promote the political brand, whereas personal content or an appealing image allows supporters to express their affinity.

Limitations and future research

The study has several limitations. Firstly, it focuses on only one platform in the quantitative phase. Other platforms like Twitter and Instagram are equally relevant to political marketing, and these findings may not explain user engagement on these social media platforms. Secondly, a larger sample would have been ideal in the quantitative phase. However, the manual coding of comments justifies the sample size. Moreover, the qualitative phase rectifies this shortcoming. Thirdly, the political context of the study limits its generalisability to the commercial context. Recent research shows that
deviations exist in the political context. For instance, visibility of likes has a negative effect on SMEB for political brands but not for commercial brands (Marder et al., 2018).

Another limitation of the study is that the quantitative analysis does not control for other variables that may have had an influence (e.g., De Vries et al., 2012; Shahbaznezhad et al., 2021). Further, the two parties are not explored individually. Importantly, we do not include comments in our model and qualitative exploration, which along with likes and shares is a common SMEB. However, several studies have previously established the relationship between comments and relational variables (e.g., Burke & Kraut, 2014, 2016; Zell & Moeller, 2018). Nevertheless, the volume or valence of comments can also have an impact on the number of likes and shares (De Vries et al., 2012). Our qualitative subjects varied in nationalities, which limits the explanatory power of the qualitative phase.

The operationalisation of relationship quality via relational comments is consistent with recent literature (Abid et al., 2019). However, since followers who like and share are not the same as those who comment, our study shows correlations at the general level, i.e. between respondents’ SMEB and respondents’ relationship quality, much like a field study. However, we are unable to determine a causal relationship at the individual’s level due to our methodology. It should be noted that this is a general limitation of several social media studies rather than one that is specific to our study. For instance, prior literature has established the effect of positive sentiment in the post’s comments on the likes and shares that the post receives (Chandrasekaran et al., 2019; De Vries et al., 2012), without establishing a causal link between positive comments and likes at an individual level.

Further, we do not assign equal weightages to relationship satisfaction, trust and commitment when operationalising relationship quality. Therefore, our results are skewed towards relationship satisfaction, since it featured more frequently than relationship trust and commitment. We use comments to capture relationship quality, which is not without limitations. Relationship satisfaction, for instance, is a broad concept that covers most positive comments. Therefore, it may be argued that our relationship quality actually denotes positive sentiment in the comments. Despite these limitations, we believe that the study provides valuable insights that are consistent with the literature.

Future researchers are encouraged to rectify the shortcomings of this study and validate the findings using surveys or experiments to establish causal relationships at the individual level (i.e. a specific respondent’s engagement that drives their own relationship quality). Similarly, researchers may choose to use another dual-process theory or other social media platforms. For instance, do retweets and favourites demonstrate a similar pattern? The conceptual framework can be further improved by exploring the drivers of comments. Beyond this, we advise researchers to hierarchise the various activities within the seven types of SMEB (Dolan et al., 2016). For instance, future researchers should explore other SMEB types like negative contribution, co-creation and co-destruction to ascertain whether different activities within these types vary in their intensity, i.e. is publishing a brand-related weblog a more active and positive form of co-creation than testimonials. This can assist marketers in understanding the influence of their content and SMEB.

Brands need to offer valuable content on social media to foster relationships with followers (Steinhoff et al., 2019). Therefore, we advise the adoption of a content-centric
approach to understanding online relationships. Political marketers are encouraged to establish the efficacy of various common persuasive cues that are yet to be explored in politics. Considering the importance of emotion in politics (Marquart et al., 2022), we believe that an understanding of the efficacy of various emotional appeals (fear, anger, joy, etc.) merits further investigation. Besides patriotic symbols, religious-, brand- and issue-related visual symbolism may also be explored (Fujita et al., 2019). Voters who are active followers of political brands (i.e. like and share political MGC) are more likely to convert their online political participation to offline political participation (Dimitrova & Bystrom, 2017). Therefore, research on this behavioural segment can aid political brands. Future research should look to integrate contemporary marketing concepts into political marketing, as politics provides an ideal testing ground for marketing concepts (Lees-Marshment, 2019). From a societal perspective, it is important to understand whether high engagement associated with political MGC having negative valence is a result of high political polarisation (Walker et al., 2017).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Notes on contributors

Aman Abid is an Assistant Professor at Suleman Dawood School of Business, Lahore University of Management Sciences, Pakistan. His research focuses on social media and political relationship marketing. His work has appeared in reputed marketing journals like Journal of Strategic Marketing, Marketing Intelligence and Planning, and Australasian Marketing Journal.

Paul Harrigan is an Associate Professor of Marketing at The University of Western Australia. Paul’s research in social media marketing has been published in over 30 international journal articles and presented at over 30 international conferences. His work has appeared in leading journals like International Journal of Information Management, Technological Forecasting and Social Change, Tourism Management, Journal of Marketing Management, Journal of Business Research, Journal of Strategic Marketing, and Marketing Intelligence and Planning, among others.

Shasha Wang is a lecturer of advertising at the QUT Business School, Queensland University of Technology, and an Honorary Research Fellow at the UWA Business School, The University of Western Australia. She is an active researcher in the areas of consumer psychology, consumer behaviour, advertising, promotion, and branding. She has published articles in Psychology & Marketing, Journal of Retailing and Consumer Services, Australasian Marketing Journal, Tourism Analysis, Higher Education, and Tourism Review.

Sanjit K. Roy is an Associate Professor of Marketing and Fellow at Centre for Business Data Analytics at UWA Business School, The University of Western Australia. He is also an Honorary Fellow at the Australia-India Institute @UWA chapter. He is a certified LEGO® SERIOUS PLAY® Facilitator. He is an Associate Editor at European Journal of Marketing and on the editorial boards of International Journal of Information Management, Journal of Business Research, Journal of Services Marketing, Journal of Strategic Marketing, and Journal of Service Theory & Practice. His research interests include Customer Experience Management, Impact of New Technologies (i.e., AI, robots etc.) on Services, and Transformative Service Research. He has published in Industrial Marketing Management, European Journal of Marketing, International Journal of Information Management, Journal of Business Research, Journal of Marketing Management, Information Systems Frontiers, Internet Research, and Journal of Services Marketing, among others.
Taul Harper is a lecturer at the Department of Media and Communication, The University of Western Australia. Prior to joining UWA, Taul was associated with Liverpool, Murdoch, and Curtin universities. Taul’s broad research area is critical theory and public communication, and his research includes work on communication technology, education, democracy, and theories of play. Taul has published two books *Democracy in the Age of New Media* and *Media After Deleuze*, and he is a frequent contributor to The Conversation. Additionally, his work has featured in academic journals like *New Media and Society*, *Australian Journal of Political Science*, and *Continuum: Journal of Media & Cultural Studies*, among others.

ORCID

Shasha Wang http://orcid.org/0000-0001-5270-5828
Sanjit K. Roy http://orcid.org/0000-0003-4932-2222
Taul Harper http://orcid.org/0000-0002-7843-5544

References

